2018年10月
  1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30 31      

最近のトラックバック

無料ブログはココログ

カテゴリー「AI」の記事

2018年9月14日 (金)

AIの"A"は何という単語の頭文字なのか

Artificial(人工)だというツッコミはあると思うのですが、本日は最後までお付き合いください。

最近すっかり日本では次のビッグウェーブとしてのAIという単語は定着あるのだが、このAIという単語、何の略なのかはご存知だろうか・・?ほとんどの方は「Artificail Intelligence(人工知能)の略である」と答えると思う。


正解は‥‥その通り、”ほとんど”の場合においてAIのAはArtificialの略と言われている。ただ、ほとんどと書いた通り、例外もある。例えば、日本のAIソフトウェアとしては最もブランド力があると思われるWatsonは、かつてはAugumentated Inteligence(拡張知能)の略でAIであると言っていた。結局この言葉とIBMが進めていたコグニティブ(Cognitive)という言葉は市民権を得ることなく、ほぼ消えてしまったのだけれれども・・。。

当時IBMにいた時の私はこの言葉を聞いた時には「何を独自性を出そうとしてるんだ、素直に普通と同じ言葉を使えばいいのに」と思っていた。以前はe-businessとか、Smarter Planetといったマーケティングワードで世の中の流れを決めるようなことが出来ていたように見えるIBM(これをアジェンダセッティングと言います)だけど、既にAIやクラウドの世界で流れを決定できるほどの力はないのに・・・と。
ところが、今の会社に移って毎日米国の研究者と会話したり、米国での研究のトレンドを勉強するようになると、IBMが提唱していたAugmentationと言う概念は正しかったのではないかと言うようにあらためて感じるようになった。


● 人間の能力を拡張する ●

51reeuvtxzl_sx344_bo1204203200_

AIだけでなく様々な分野で未だに先端を走っていると言われているシリコンバレーで技術の話をすると、よく出てくる言葉が「Augment」だ。例えば、AR(Augmentation Reality)はまさにこの言葉が入っているが、これはリアルな情報と電子情報を重ね合わせることで、人間の視覚や情報処理能力を増強する/拡張するという取り組みをさす。 例えば、人間がパッと見ただけではわからないような複雑な設計をした構造物に対して、データベースに格納された設計情報を付加することで、人間が付加情報と実際の建築物を同時にみることが出来るようになる。これは「視覚」を増強したものだということが出来るだろう。

これだけでなく、ロボットやハードウェアを開発する際にもAugmentationという概念は常に意識されている。日本でもサイバーダイン社などが開発している体につけて人間のサポートを行うようなロボットは開発されているが、人間が装着することにより能力を増強することが出来るようなロボットは「筋力」を増強したものだと言えるだろう。 かように、シリコンバレーで開発されている技術の多くは「人間の能力を高めて、新しいものを生み出そう」という発想がそこかしこにみることが出来る。


一方で日本で技術の話をすると、まずAutomationによる「コスト削減」という話がメインで出てくる。現状で人間が行なっている作業を機械にすると、だいたい何人の労力をロボットがカバーすることが出来るので、だいたい○○円コストを削減することが出来るということである。こういった発想は確かにビジネスにとってはすごく重要だが、これだけでは全体としてビジネスの規模を拡大することは出来ない。いわば、この発想は現在のパイの中で、どれだけ旨味のある部分を取るか・・といった発想に近いのだ。

もちろん米国でもコスト削減のためのAutomationというのは重要なテーマだし、日本のように人口減と労働コスト増大という問題に直面すれば、必ずコスト削減のための技術利用というのはもっと積極的になるだろう。私もAutomationによるコスト削減に意味がないというつもりは毛頭ない。それでも基本的にAutomationというのは「引き算」の発想である。「Automationにより、XX人の仕事を自動化することができるので、YYのコスト削減を測ることが出来ます」というのが、こういったアイデアを検討する際に必ず出てくるビジネスケースというやつである。


● 人間がAIや機会と共存するために ●

日本で多くの企業と話していると、ほぼ必ずといって出てくるのは「人間にしか出来ないことがある」「人間ならではのものを求めている」という単語である。確かにそういうものは今後も相当の期間は消えないだろうし、当面のところは人間のみができること、を、売りにしていくのも一つの戦略だといえる。

一方でそういう主張をする多くの方が「人間にしか出来ないものがある」というバイアスで物事を語っている、もっというと「人間にしか出来ないものがあってほしい」という願望を込めて話しているということもかなり多い。それは時には自社の雇用を守らねばならないという使命感かもしれないし、あるいは機械に自分たちの仕事を奪われてしまうという漠然とした恐怖感かもしれない。具体的に、「何を」「どこまで」「どのようにすれば」機械と人間の仕事を切り分けられるのか・・・ということを考えずに、まず否定の感情から入ってしまい、詳細な分析を行うことが出来ないのだ。


こういった議論をする時に重要なことは、我々人間自体も周囲に存在するテクノロジーによって進化/変化していかという視点を持つことである。例えば、コンピューターが生まれるまで、長い間計算には算盤が必要だったが、今では趣味や教育効果を狙っている以外で算盤を使うことはほとんどないといっていいだろう。あるいは我々の世代にとっては「学ばねばならなかった」タイピングは、1世代下の人間にとっては当たり前の作業となったし、もっと下の世代ではフリック入力が当たり前になってしまって、逆にまたタイピングは「学ばねばならない」ものになった。これを進化と呼ぶかどうかを別として、このようにわずか10年単位で多くの人間が平均的に持つであろうと思われる能力は変化してしまっているのである。


これと同じことはAIがより社会に入ってきた際にも、間違いなく起こる。人間はその裏側のブラックボックスを理解せずとも、慣れとともに納得して利用する生き物なので、今の人間にとって奇異に思えることが、次もずっとそうではないとは言い切れない。
テクノロジーに向かい合う人間や日本企業は、「テクノロジーによって何を実現できるのか?」「それは今の我々の作業(仕事)のどこまでを代替するものなのか」、そして「私たち人間はその変化をどのくらいのスピードで受け入れるのか?」を常に問うべきだと思うのだ。

2018年3月12日 (月)

今から人工知能の勉強を始める人向けにお勧めする2冊

転職する前は、日本で最も有名になったAIソフトウェアのマーケティングを担当していたし、振り返ってみれば大学院時代は遺伝的アルゴリズム(Genetic Algorithm)やニューラル・ネットワークなどの手法を使って研究をしていたので、今ではほとんどコードは書かなくなってしまったとはいえ、AIに関する技術的な基礎というのは一般的な意味ではあるほうだと思う(※1)。

一方で、転職した企業は技術開発を専門に行なっている企業ということで、極端に言うと「AIが絡まない仕事」というのはない。それくらい全ての領域でAIというのは組み込まれてきているし、現状で主に米系クラウドベンダーや日系SIが提供しているような「PCを用いて利用することが前提とされているような」AIというのは、むしろAI利用という観点からは一部でしかないということがわかる。


私が大学院で勉強してた頃はちょうど「直近のAI冬の時代」の終わり頃なので今のようにAIが一般的に盛り上がるというのはもはや隔世の感がある。今では、マーケティングやってる人も製品担当も、とりあえずAIという文言をつけようとしているような状況で、今までとほぼ何も変わっていなくても「AI」と付ければマスコミも取り上げてくれるような状況だ(※2)。ただ、先日も付き合いのある「AIをマーケティングしている人」から、『御社のAIソリューションは日本語が使えるのか?』という謎の問い合わせをもらったように、AIに対する理解という意味では、世の中の一般はまだまだ追いついていない状況だと感じる(※3)。

そういうことで、自分としても2018年の現場までの発展を再度理解しなおすとともに、どのようなステップで話をすればよいかを学ぶために、AIについては基礎から学び直すこととした。今日は、そのはじめとしてまず2冊取り上げたい。
なお、私のポジションは「AIを利用して何かをしたい会社に、研究開発プロジェクトを立ち上げる」というのが現場での役割なので、あまり技術的なことを"自分で"実践することはあまりない(codingをするとかはメインの仕事ではないという感じだし、自分の興味もあまりそこにはない)。


● AI発展の外観と可能性を理解する ●


2015年の出版のため、すでにこの業界ではだいぶ古くなってしまった情報が含まれているが依然として全体を概観するというためには最も役に立つと思われるのが、東京大学の特任准教授である松尾豊先生が出版された「人工知能は人間を超えるか」が、この領域を最初に学ぶには良いと思う。技術的な内容は最小限にして、AI研究の歴史的な内容を概観するとともに、現在起こっていることにどのようなインパクトがあるのかをわかりやすく書かれている。

 

51mwcqyipl

この本の中で特に強調されており、また最も重要なことは、現在のAI研究を牽引している「Deep Learning(深層学習)」が何故にそれほど重要なのかということだ。一言で言うと、この技術を使うことで、AIが「何に注目して学びを行うのか?」を人間が考える必要がなくなるのである(実際にはそんな単純なものではないが)。これまでは、AIに何かを学ばせるためには、人間がその現象を捉えるためのモデルや変数を考えてプログラムしなければならなかったのだが、Deep Learningを利用することでそういった「現象のモデリング」の問題を回避して学習を行わせることが出来るようになった(※4)。


この技術を使えば、これまではAIで取り扱うことが難しいとされていた人間の様々な活動をソフトウェアでコピーすることが出来るようになる。例えば人間だけが出来るような微妙な細工、例えば工芸作品の作成、といったものも理論的には学ぶことが出来る。もちろん実際の世界に結果を反映するためには、ソフトウェアだけではなく、ハードウェアの進化や様々な要素の統合、またAI自体の学習方法の工夫など様々なハードルが残っているが、少なくとも「理論的には」可能であると言うことが何よりも重要なのである。


一方で、2018年の現在から見ると、著者が想定していたことが想定しているスピードで進んでいないこともわかる。特に重要かつ残念なのは、この技術は日本にとって極めて重要であると言う提言があったにも関わらず、日本ではまだまだこの領域に投入されるリソースが足りていないということである。この領域を長年引っ張って来た米国はもとより、急速に力をつけている中国にも圧倒的な差をつけられているのが現状である。その最も大きな要因が、松尾先生がすでに指摘されているように「AIの発展により直接的にビジネスの結果が改善する」産業が日本には非常に少ないと言うことがあげられる。
実際には、日本にはAIとハードウェアの組み合わせにより改善が見られる分野は多くあるのだが、まだまだ経営者の視点がそこまで向かっていないというのが現状だというのが、私の率直な感想だ。とはいえ、私が勤務しているSRIでもこれから少しずつではあるが日本企業のAI活用事例を発表できるようになっていくと思う。すでに遅れてしまっているのは事実だが、あと1年・2年で「なんちゃってAI」ではない、産業現場におけるAI活用は急速に日本で広まっていくはずだ(と期待している)。


● 人工知能開発最先端の現場を知る ●


もう一つは、現在日本で人工知能を産業界で大きく牽引している清水亮さんが(当時の)日本の人工知能開発の最先端を担う方々にインタビューをした「よくわかる人工知能」だ。これも2016年の出版なので、この本が出版された時点から色々と世の中は動いてしまっているのだが、依然として方向性について理解するにはとてもわかりやすいと思う。・・・というよりも、今となってはAIについての変化が早すぎるということを実感するための良書という位置付けとしてもよいかもしれない。

41zrqwbq7kl_3


まず、本書で取り上げられているNVIDIAだが、2017年末には事実上Deep Learning の学習用のGPUではほぼ独占という立場を築き上げることに成功したものの、その地位を利用したライセンス規約変更を行なうという荒技に出た。本書の著者である清水さんもNVIDIAを使わずにDeep Learningをする方法をブログにあげたりと、一時の「NVIDIAさまさま」という状態からはだいぶ変わってしまった。

また、本書の最後で取り上げられていたスパコン開発会社PEZYの斎藤社長は詐欺事件の被疑者として逮捕をされてしまった。本書に記載されている成果とは異なるところでの逮捕のため、成果自体は依然として輝かしいものだが、今後の進歩は遅れてしまうことは否めないだろう。


本書は基本的に「清水さんが話を聞く」というスタイルなので、本人がノッている場面とそうでない場面で、あからさまにテンションが違っているのが面白いところだ。言い換えれば、この本はあくまで「清水さんが見ている世界」を表現しているだけなので、考え方に対してどのようなポジションをとるかは個人の自由である(※5)。そういった意味で、興奮しつつもかなり客観的に書こうとしている前書と、こちらではかなりニュアンスが異なる。それでも、どういった方向性に進むのか・・・といったことを知るには最先端の方に話を聞くのが一番というのは、全くその通りだと思うし、その内容をこれだけわかりやすく噛み砕いてくれる本書は入門書にうってつけだと思う。


※1・・・ここではあくまで一般的な知識レベルと比べてということであって、対象分野を研究している、例えば情報科学専攻を終了した方と比べられるようなレベルではない。

※2・・・似たような状況にあるのがブロックチェーンで、世の中のブロックチェーン・ソリューションのうちかなりのものは、ブロックチェーンを使わずとも実現できるし、Initial Coin Offering(ICO)なんかも、技術的なこととはもはや何の関係もないフェーズに入っているように見える。

※3・・・アルゴリズムという意味ではある言語特有ということはあまりないので「使える」が、日本語向けにチューニングしていると聞きたいのか、それともすでに日本語利用を学習済みなのか、Input/Outputのことを指しているのか、そういったことを明確に切り分けずに「日本語が使えるのか/使えないのか」と質問されても回答のしようがない。

※4・・・ちなみに私の大学院における研究領域は、この「現象のモデリング」である。

※5・・・本書でかなり肯定的にとりあげられている「受動意識仮説」については、自分は批判的である。厳密な意味での「意識」の定義が異なっている可能性があるが、意識は受動的なものではなく、「自分の意識を、自分が感知するまでの時間的な遅れ」があるのではないのか・・というのがスポーツなどの経験からの私の仮説・・・思いつきレベルだが。